Random stuff that I found on the net that looks to be useful.
note: might be useful to export jupyter notebooks as markdown and then insert it into the blog
# when computing multiple moving averages:
#for i in range(2, 10):
# df['MA{}'.format(i)] = df.rolling(window=i).mean()
# aggreagate average of all MAs, but you can modify this easily to do other stuff
#df[[f for f in list(df) if "MA" in f]].mean(axis=1)
reversed_string=string[::-1]
import glob
filepaths = glob.glob(path.join(output_folder, "*.csv.gz"))
filepaths = sorted(filepaths)
filepaths
crossover = ( (SMA_50 <= SMA_200) & (SMA_50.shift(1) > SMA_100.shift(1) |
(SMA_50 >= SMA_200) & (SMA_50.shift(1) < SMA_100.shift(1)))
)
crossover_price = df.loc[crossover, 'SMA_200']
plt.scatter(crossover_price.index, crossover_price)
tickers = ['AAPL', 'GOOG']
for ticker in tickers:
globals()[ticker] = web.DataReader(stock,'yahoo',start,end)
AAPL.head()